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Abstract

Medical conditions such as Stroke can lead to severe disability in sufferers. Physical rehabilitation

is generally in the the form of repetitive exercises which can be mundane and unmotivating. This

work involves developing a Serious game for the purpose of motivating a sufferer of upper-limb

control difficulty to perform hand gestures in an interactive and interesting context. Hand gestures

are captured using a wearable sensor system consisting of Mechanomyography sensors and Inertial

Measuring Units. The Linear Discriminant Analysis and Support Vector Machine classifiers were

tested offline by 6 able-bodied individuals and was shown to have an average offline training accuracy

of 91.7 % and 99.5 % respectively when using subject-specific training data. A potential issue in the

supervised training of hand gesture classifiers, is that large subject-specific data sets can be difficult to

obtain for an individual with upper-limb difficulties. Therefore to reduce the burden, the classification

accuracy for the Linear Discrimiant Analysis and Support Vector Machine were examined when using

a generic pooled dataset and a pooled dataset supplemented by the user’s data. The pooled dataset

provided an average accuracy of 32 % and 39 % for the Linear Discriminant Analysis and Support

Vector Machine classifiers. Adding user-specific data increased the Linear Discriminant Analysis

classification accuracy to 42 % and the Support Vector Machine classification accuracy to 55 - 60 %.

The results show that there is potential in using user supplementary datasets in training MMG hand

classifiers to minimise muscle burden on the user.
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1 Introduction

1.1 Background

Human Machine interfaces (HMIs) are crucial in society as a means of enabling individuals to interact

with cutting-edge technology. HMIs consist of 3 main parts:

• A stimuli made by the human user

• A sensor to measure the stimuli

• A response by a computer.

By improving the accessibility of cutting edge technology, individuals can gain a range of benefits

such as a potential reduction in workplace injuries, as well as increasing the degree of independence

for the elderly and the disabled [8]. Due to advances in modern day healthcare, there is an increase in

the number of people living longer, with an increase in patient survival rates. Although this is often

at the cost of a reduction in their functional capacity post operatively [9]. Therefore, HMIs which

provide a means of replacing or bypassing an individuals motor impairment and thus increase their

functional capacity are of particular importance and likely to become more significant in the future.

The NU interface is a motion and muscle sensing HMI built by Samuel Wilson in the Biomechatronics

lab at Imperial College London. It has already proven to be applicable to control a range of different

objects such as a phone, television, prosthetics, as well as a Baxter robot. Therefore, the likelihood

that the NU interface could be used to provide assistance to the disabled or elderly is high. The NU

interface consists of both hardware and a complementary Windows form application made in C#.

The hardware is a wristband which consists of two parts: an Inertial Measuring Unit (IMU) which

measures the motion (acceleration and rotation) of the arm and Mechanomyography (MMG) sensors

to measure the muscle activity of the forearm muscle.

Figure 1.1: NU interface Windows form application
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1.2 Motivation

Stroke is a major problem in the UK, with an estimated 111,000 first-time strokes occuring each

year. Stroke can often cause severe physical disability such as attention deficiency, pain, weakness

and paralysis, often on one side of the body. Such impairments can result in loss of ability to carry

out typical day-to-day activities [10]. Post-stroke rehabilitation aims to help sufferers of stroke to

restore movement in their limbs by carrying out exercises on a regular basis. However, patients have

noted that performing these exercises can be laborious and mundane [11]. Therefore, activities which

can encourage patients to perform these exercises can prove highly beneficial in a rehabilitation con-

text. One potential method could be to develop a video game to encourage patients to perform these

exercises.

Video games are a well-known means of providing excitement, motivation, challenge and enjoyment

to those who play them. Depending on the design and content of the video game, they can be a

unique medium in transferring important information. Video games which have been designed to be

associated with education and the teaching of new skills and concepts are known as Serious games [12].

Many scientific studies have proven the positive effect of Serious games in a wide range of areas such

as reaction time, cognitive ability, visual acuity, hand-eye coordination as well as the development of

social skills [12]. Moreover, improvements in Virtual Reality technology enables different scenarios

and environments to be constructed which may be impossible to reconstruct in real-life. This can

improve the quality of learning from the game as this can allow users to experience simulations of past

events as well as providing realism to the game which can encourage users to become fully immersed

in the game. Due to the wide range of virtual environments that can be simulated, video games are a

tool that can be orientated towards the treatment and education of different sectors of the population

(including children and the disabled).

Serious games can also be used for several applications including:

• Training professionals

• Health prevention

• Upper or lower limb rehabilitation.

The design and difficulty of the Serious game will have to depend on the goal of the game. Games for

limb rehabilitation would be designed to help during the rehabilitation process by making exercises

more enjoyable and easier than traditional methods. However a Serious game for upper-limb rehabil-

itation would need to allow the user to go at their pace as the emphasis of the game should be for the

user to perform the technical movements correctly rather than performing the movements quickly,

especially as fast movements may be too difficult and it could cause the user to become frustrated.

Due to these benefits of Serious games, the aims of this work were to:

• Develop a software algorithm to optimise the detection, processing and classification of hand

gestures using the MMG data from the wearable sensor system

• Develop a Serious game in the Unity game engine which could be used for the purpose of

upper-limb rehabilitation.

• Use the software algorithm in conjunction with the Serious game.

2



2 Literature Review

HMIs have expanded over the years and they have been instrumental in allowing humans to control

complex machines such as robots and drones [13]. There are various different stimuli for HMIs such

as light, sound, touch, motion and biological based stimuli [8]. Depending on the specific HMI, either

one or several different stimuli can be detected.

In the past, gesture recognition was solely based on computer vision approaches where camera sys-

tems would record an individual performing actions. However, this approach was limited in range as

it required the individual to be in the presence of a camera and additional equipment such as light

reflective markers as seen in Fig. 2.1 [14].

Figure 2.1: Light reflective markers on a test subject [1]

To overcome this limitation in range, biological based HMIs which enable an individual to control a

machine through conscious control of their physiological signals can be used instead. This has been

made possible due to the improvements in distinguishing and classifying different physiological signals

into different classes by using pattern or non-pattern-based recognition approaches [15].

Research on Biological based HMIs have been primarily focused on muscle activity related to the

extremities of an individual. This has been primarily due to the ease of controlling muscles on

the hands or the feet [16]. However, other research has involved the measurement of brain signals

[17] or tongue-movement ear pressure signals due to the movement of the tongue [6, 18], which can

potentially be used for assisting physically impaired individuals who have limited body mobility. The

most common method for the analysis of muscle signals is through the process of Electromyography

(EMG), which measures the electrical stimulation resulting from the action potential produced by

skeletal muscle contraction [19].
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Non-pattern based methods of EMG signal recognition include ’on and off control’ and ‘proportional

control’ [20]. These methods are based on the amplitude of the EMG signal and the response is

proportional to the amplitude of the voltage produced from the action potential. This generally

only enables two different gestures to be identified such as an open clench and close clench gesture.

It is possible for additional gestures to be identified using non-pattern based methods when EMG

electrodes are used to identify individual finger movements. But, this is generally difficult to achieve

without implantation of the EMG electrodes due to the crosstalk in EMG signals from the muscles

relating to different fingers [20]. Pattern based recognition involves examining the amplitude as well

as the shape of the signal, which is important as different gestures vary in both these ways as shown

in Fig. 2.2.

Figure 2.2: EMG data sample from 4 different arm movements [2]
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Pattern recognition involves various steps such as [15]:

• Preprocessing of the signal such as filtering and smoothing by using a moving average

• Segmentation of the area of interest

• Feature extraction (most commonly on time domain features)

• Classification of the features.

Pattern recognition is generally superior than non-pattern based recognition as it is generally able to

recognise a larger number of gestures with higher accuracy, however due to the high computational

intensity, the effectiveness of these pattern recognition systems are limited in real-time [15, 16].

Pattern recognition of EMG signals have been studied in depth with previous works involving using

surface EMG signals from the forearm muscle with different classifiers such as Multilayer Perceptrons

[21], Hidden Markov models [22, 23] and other classifiers such as Linear Discriminant Analysis (LDA)

[24].

Various studies have been completed on the classification of EMG signals and it can be seen that there

is no minimum number of channels required to achieve high classification accuracy, as depending on

the processing and classifier, high accuracies can be achieved. This can be proven as when 8 EMG

channels were used, an average accuracy of 92% was achieved for classifying 7 gestures [24] whilst a

classification accuracy of 90 % was seen when using 4 EMG channels to classify 6 different gestures

[25]. However, there is a general trend that increasing the number of input channels increases the

classification accuracy which is due to there being more information present from the different parts

of the muscle being measured. The information obtained from EMG sensors is generally maximised

by placing the sensors equidistant around the circumference of the muscle of interest as shown in Fig.

2.3.

Figure 2.3: EMG sensors placed at different places on the forearm [3].
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Furthermore, it has been seen that muscle movement of the biceps and triceps, which is unrelated to

the forearm muscle, can also be classified effectively [2]. This shows that there is potential of using

several EMG sensors on different parts of the arm which could allow a greater number of gestures to

be recognised with a high accuracy.

Pattern recognition of EMG signals can also has been in conjunction with other sources of data to

enhance classification accuracy of gesture recognition. This has been seen in the context of EMG and

IMU signals being utilised in conjunction for the purpose of controlling prosthetics as well a range of

different robots [14, 22].

One of the major issues affecting the use of EMG outside a clinical environment is that it is often

subject to interference from physiological factors, such as skin impedance. Skin impedance can be

affected by conditions such as the users level of scar tissue and sweat [26]. Sweat level is a par-

ticularly significant issue as sweat levels can change in time which can cause calibration errors in

an EMG based control system, which therefore limits the long-term applicability of EMG [4]. An

alternative approach to measuring muscle activity, which can overcome the issue of skin impedance,

is Mechanomyography (MMG). MMG involves the measurement of low frequency vibrations between

2-200 Hz which are produced during the muscle contraction of skeletal muscles. Additional benefits

of MMG compared to EMG include a higher signal-to-noise ratio and elimination of the need for

shaving and conductive gel [27, 28].

Pattern recognition of MMG signals have been used in various contexts including gait analysis, con-

trol of prosthetics as well as the diagnosis of degenerative disorders where the signals from at least

five different muscle actions have been identified as being distinct from one another [4, 29, 30].

Similarly to EMG pattern recognition, many studies have been conducted using MMG pattern recog-

nition which have proven that MMG is a viable replacement for EMG in the controlling of multi-

function devices. One study examines the pattern recognition of MMG signals for the purpose of

controlling a commercial prosthetic hand (Bebionic Version 2) where 6 MMG channels are used in a

template matching classification approach. It was seen that an offline classification accuracy of 83.5

% for 7 gestures was obtained when testing on 5 healthy individuals and 1 trans radial amputee [4].

This shows that MMG can be used as a successful alternative to EMG and is robust enough for use

by both healthy individuals and amputees. Other studies show that when using more sophisticated

classifiers such as LDA or a Convolutional Neural Network (CNN), accuracies of 93 % can be obtained

for 8 different forearm motions and 94 % for 5 different hand gestures [13, 31].
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Furthermore, previous research by Prociow et al [32] has studied the effects of using both EMG and

MMG in conjunction for the classification of 7 gestures using a Learning Vector Quantisation Neural

Network. This research showed that classification using both MMG and EMG had greater accuracy

(93.83 %) than using solely EMG (91.36 %) or MMG (81.48 %). However, this improvement in

classification accuracy when using both EMG and MMG may have been due to the fact that greater

number of channels were used to collect more information from the forearm muscle rather than a

synergistic effect of using both MMG and EMG channels [32] .

Despite the effectiveness and high classification accuracy of EMG and MMG for gestures classification

purposes, there are several factors that prevent transition from the laboratory to clinical application.

Generally, laboratory testing involves controlling several factors such as arm posture, fatigue and

sensor position which can affect the data acquisition process from muscle contraction. However, in

daily living, it is difficult to control these factors and this can lead to variation in the data collected

and a decrease in gesture recognition accuracy [16]. However, there is potential for effective use of

EMG and MMG outside a clinical environment as research has been conducted on using EMG and

MMG over long periods of time in uncontrolled environments for the purpose of gait and lower-limb

fatigue analysis [29, 33].

The three best known approaches to the pattern recognition are template matching, statistical clas-

sification and Neural Networks. Template matching in pattern recognition is used to determine the

similarity between two entities (points or shapes). This involves a template being made for the dif-

ferent classes and then the entity to be recognised is matched against the different templates. A

similarity measure is used to quantify the degree of similarity between an entity and the different

templates, which then enables the entity to be classified into the group with the greatest similarity

[34]. In a statistical classification approach, each pattern is represented in terms of D features (known

as a feature set) and is viewed as a point in a D-dimensional space. The goal of statistical classifi-

cation is to use the features of a pattern to identify which class it belongs to. The effectiveness of

the feature set is determined by how well patterns from different classes can be separated from each

other [5]. It is generally desired for the value of a feature to have low intra-class variation whilst

having high inter-class variation. Given a set of training patterns from each class, the objective is

to establish decision boundaries in the feature space which separate patterns belonging to different

classes [34].
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3 Hardware

In this project, the hardware used for the recording the MMG and inertial data was designed and

fabricated by Samuel Wilson at the Biomechatronics lab of Imperial College London. To record the

inertial and muscle activity, it was necessary to consider the following factors:

• The number of degrees of freedom (DOF)

• Range of the sensors

• Frequency at which the data is recorded

• Usability of the hardware

The inertial measuring unit (IMU) possesses 9 DOF as it can read 9 unique parameters to define

itself. The IMU achieves this as it contains 3 accelerometers to define the linear acceleration along the

3 principal axis, 3 gyroscopes to define the rotational orientation and 3 magnetometers to measure

the strength of the magnetic field.

The range of the accelerometers, gyroscopes and magnetometer was set to ±2G, ±500 degrees per

second and ±2 gauss respectively. These values correspond to the typical range of human movement

and are effective in the calculation of the limbs orientation during manipulation tasks [4]. The sensor

data (MMG and IMU data) was streamed via Bluetooth to the Windows form application where

subsequent processing of the raw inertial and MMG data occurred.

The IMU was custom made with a maximum frequency of 1000 Hz to ensure that the sampling rate

of the recording device was sufficiently high to prevent aliasing of the high frequency features, which

could arise from the interaction of the different channels of the recorded MMG data [4].

The size of IMU used in the project was 3.7cm x 2.5cm x 1.1cm and the weight was only 12g (in-

cluding the battery and the shell box). Overall, the IMU was lightweight, small in size and easy

to wear. Furthermore, Bluetooth was embedded in the hardware which enabled wireless use of the

sensor system.

The MMGs were designed to ensure optimum data collection from the muscle vibrations. As described

in the research by Samuel Wilson and Ravi Vaidyanathan, the MMGs consisted of a micro-elecro

mechanical microphone placed in a printed case with the opening covered with a mylar membrane

to optimum signal transmission from the skin to the microphone[4, 35]. 6 different MMGs were

distributed evenly around the wristband used to collect data from different parts of the forearm

muscles.
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It has been seen that the amplitude of the MMG signal is maximised when the contact pressure

between the sensor and the muscle is high and when the sensor is placed at the centre of the muscle

[36]. Therefore, MMG signals are highly sensitive to contamination by motion artifact as moving

limbs can affect the amplitude of the MMG signal as the movement can cause variations in the con-

tact pressure as well as the relative position between the MMG sensor and the muscle. Furthermore,

due to the need to move the IMU to provide directional commands, contamination of the signal by

motion artefacts is likely to occur.

Therefore, to minimise the motion artifacts, a velcro strap was implemented during the design of

the wearable sensor system which enabled the tightness to be optimised for each user to ensure a

consistent contact pressure and minimise the relative movement of the MMG sensors on the muscle.

The design and the different components of the wearable sensor system can be seen in Fig. 3.1.

Overall, the sensor system used in this project satisfies all the basic requirements for the collection

of data related to the muscle activity and limb orientation of a user.

Figure 3.1: Armband showing sensor position [4]
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4 Experimental protocol

Data for algorithm development and offline testing was collected by Samuel Wilson from 6 healthy

subjects (3 male, 3 female). The data collection procedure occurred as described in the previous

research performed by Samuel Wilson [4]: The data was measured using 1 IMU and 6 MMG sensors

which were located on an armband which was placed on the subjects forearm, with the IMU upper-

most on the arm when the subjects hand was held palm down. To minimise the motion artifacts

from the movement of the limbs and to minimise the variance of the MMG signals due a variation of

the position of the arm, each subject was seated at a desk, with their back straight and their elbow

placed on the table. The forearm was held as vertical as possible, to ensure that the minimum level

of muscle activity was necessary to maintain the hands position.

The data was recorded with the aid of a timer which would change in colour after a specific time

interval to inform the user when to make a gesture. The length of time between the gestures were

dependent on whether a gesture would require full or partial activation of the forearm muscles. Large

gestures which require full activation of muscles, required a gap of 4 seconds, whereas small gestures

would require a gap of 1-2 seconds between gestures. The different states of the timer can be seen in

Fig. 4.1.

(a) ’Do not perform gesture’ state of timer (b) ’Perform gesture’ state of timer

Figure 4.1: Different states of the timer
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Immediately following the action of a gesture, the hand would relax to prevent a single gesture being

recognised as 2 separate gesture events. Each subject performed 100 instances of each of the seven

gestures shown in Fig. 4.2. The MMG and IMU data was recorded and sent to the NU interface

where it would be used in real-time or saved as CSV files for offline analysis. The real-time data or

the offline data would then be read in MATLAB R2017a for processing and classification.

Figure 4.2: Gestures used for Test 1 Top Row, Left to Right: Rest position, Open (1), Close (2), First

Finger Pinch (3) Second Row, Left to Right: Middle Finger Pinch (4), Thumbs Up (5), Point (6), Finger

Roll (7) [4]
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5 Software algorithm

The wristband collects the MMG and the IMU data from the user and sends the data to the Win-

dows form application to interpret the user’s commands. The raw inertial data was processed using

a gradient descent algorithm to calculate the world referenced orientation of the IMU [37], which

enabled the calculation of the roll, pitch and yaw angles used for directional commands.

For the offline analysis, data was collected from each sensor and saved in CSV files where each CSV

file contained 10 gesture instances each. This data was used to produce a matrix with 6 columns with

each column containing the data of each MMG sensor varying in time. For the real-time analysis, the

MMG data collected by the NU interface was transmitted to MATLAB R2017a by using a MATLAB

application in the C# code. In MATLAB R2017a, the MMG data was processed and classified then

the results of the classification was sent to Windows form application before being passed to Unity

through an anonymous pipe. The gesture analysis consists of various stages which can be seen in Fig.

5.2.

Raw MMG data

Filtering

Squaring

Moving average

Detection

Segmentation

Feature optimisation

Template Matching Classification

Statistical classifier

Figure 5.1: Flowchart showing the different steps in the gesture analysis
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Raw MMG data Processing Feature optimisation

Template Matching Classifier

Statistical classifier

Action

Figure 5.2: Flowchart showing the different steps in the gesture analysis

5.1 Processing data

The initial processing of the raw MMG data consisted of filtering, squaring and performing a moving

average. After the initial processing, the amplitude of the processed data was examined to see if

it went above a certain threshold which would signify a gesture instance event. Following this,

the window of data corresponding to the gesture instance would be segmented. The extraction of

the MMG data from the CSV files was achieved using the ’Raw MMG data extraction’ function

shown in Appendix. A. The filtering of the data was achieved in MATLAB by using the ’Filtering’

function shown in Appendix. B and the detection of the gesture instance event was completed by

the ’Segmenting’ function showin in Appendix. C. The squaring, moving average and segmentation

of the data was performed using the ’Processing data’ function in Appendix. D.

5.1.1 Processing data: Initial processing and gesture detection

To minimise the motion artifacts present and remove other sources of noise in the MMG data, the

matrix of raw data m was band-pass filtered between 1 – 100 Hz using a first order Butterworth filter

to produce a matrix m*. The band-pass filtering was particularly effective as it was able to shift the

baseline amplitude of the MMG signals to a value of 0 which made identifying the absolute amplitude

of the signal more apparent. The effects of the filtering can be seen by looking at Fig 5.3 and Fig

5.4.
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Figure 5.3: Raw MMG signal
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Figure 5.4: Band-pass filtered MMG signal

In order to detect whether a gesture had occurred, the power of the MMG signals were monitored to

see if it exceeded a pre-defined threshold. The overall power of the gesture was defined as being the

summation of the signals from all the MMG sensors. It was important to take into account all the

different MMG channels of data as different gestures would lead to differing levels of activation from

the different parts of the forearm muscle. As the quantities of interest in the signal was the total

amplitude and the frequency of the MMG signal, the sign of the MMG signal made no effect on the

total power of the signal, therefore, the elements in the matrix m* was squared to give the matrix

msquared. The effect of squaring the data can be seen in Fig. 5.5.
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Figure 5.5: MMG data after filtering and subsequent squaring of the data

However, movements of the arm or incomplete gestures, could also lead to high amplitude MMG

peaks which would lead to false positives. To mitigate against these type of false positives, a 150

point forward moving average was performed on matrix msquared to give matrix maverage. This

lead to the amplitude of short lived peaks smoothening out, whereas long lived peaks from complete

gesture were less affected and were able to reach the desired threshold [38]. 150 points were chosen

for the moving average as it was generally seen that the peaks lasted approximately 150 ms, which

can be seen in the second peak in Fig. 5.6. The smoothening effect of the moving average can be

seen in Fig. 5.7.
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Figure 5.6: MMG signal peak before smoothing with a moving average
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Figure 5.7: MMG signal peak after smoothing with a moving average
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The energy of a gesture, egest, can be defined as:

egest =

N∑
j

maverage (5.1)

Where N is the number of sensors that were used in the system. The offline data was analysed when

deciding on a threshold to indicate whether a gesture had occurred. By looking at the MMG data

from the different gestures, the goal was to find an energy threshold TMMG, that marked the maxi-

mum number of gestures, whilst minimising the number of false positives across all the test subjects.

This was difficult to achieve as the signal amplitude varied between different individuals depending

on the position of the MMG sensor relative to the forearm, the skin thickness (fat content) as well

muscularity of the individual. Furthermore, there was slight deviation in the amplitudes of signals

from a single individual due to the level of force exerted by the individual and the level of fatigue

that the individual would accumulate. However, a larger issue present was that different gestures

performed by a single individual could vary quite significantly in terms of amplitude, therefore it was

difficult to obtain an optimum threshold which could be used for all the different gestures. Small

gestures and large gestures varied significantly in amplitude and an example of the difference in the

MMG signal magnitude between a small gesture and a large gesture can be seen in Fig. 5.8 and Fig.

5.9
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Figure 5.8: MMG signal magnitude for a small gesture
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Figure 5.9: MMG signal magnitude for a large gesture

Therefore, having a low threshold which is suitable for small gesture activation could lead to false

positives when a large gesture is performed as the smoothing effect of the moving average may not

lower the amplitude sufficiently. However, having a high threshold suitable for the large gestures

would lead to false negatives when a small gesture is performed as the threshold would not be

reached or it would require the user to exert significantly which would not be sustainable due to

fatigue and discomfort. Many previous works utilise calibration training step to find thresholds for

a particular user, however this likely finds a single threshold which is a compromise between the

optimum threshold for a large and a small gesture [39]. To overcome this issue in the offline analysis,

the offline analysis algorithm used 2 different thresholds, one for the larger gestures and a second for

the smaller gestures. This was done using the ’Segmenting’ function shown in the Appendix. C. The

function looks at different points of the matrix maverage to see if there are any points that exceeds the

upper threshold TMMGUPPER first. If the upper threshold was too high and there were no points in

time where the summation of the MMG signals exceed the upper threshold, then maverage would be

re-examined to see if there any points that exceed the lower threshold TMMGLOWER. Furthermore, to

prevent false positives in the classification of gestures due to motion artifacts caused by the movement

of limbs, Samuel Wilson implemented a threshold Tgyro into the C# code which was based on the

gyroscopic energy (Gx,Gy,Gz). This gyroscopic threshold would ignore signals detected at the point

when the rotational acceleration of the arm was above the threshold. A gesture was said to occur at

time i if Occ = 1 where:

Occ =


1, when ||G|| < Tgyro& egest > TMMGUPPER or ||G|| < Tgyro & egest > TMMGLOWER

0, otherwise

(5.2)
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5.1.2 Processing data: Gesture segmentation

The main goal of segmentation was to find the time instants in which abrupt change in the properties

or dynamics of a signal occur. The 10 gesture instances within a CSV file were segmented using a

change detection method where the data was processed sequentially and when a change was detected,

the detector was restarted [40].

In this case, the matrix maverage was processed sequentially until there was a point where Occ =1,

then a segmentation point was marked to represent the occurrence of a gesture event. The detector

was then restarted and skips the next 1500 points (1.5 seconds of data) after the previous segmen-

tation point, in order to prevent the detector from misclassifying a single long lasting gesture event

as 2 separate gestures events. This process of finding segmentation points was completed until 10

different segmentation points were found when using upper energy threshold, TMMGUPPER. If 10

different segmentation points were not found using TMMGUPPER, the process of finding segmenta-

tion points would be repeated from the start of the matrix maverage whilst using the lower energy

threshold TMMGLOWER instead. After the segmentation points were found, the gesture instances in

the filtered data in matrix m* would be segmented into non-overlapping segments and collated into

a matrix mcollated. The locations of the segmentation points in the maverage and m* can be seen in

the Fig. 5.10 and 5.11.
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Figure 5.10: Marking of the segmentation points when MMG signal after the moving average reaches the

threshold
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Figure 5.11: Segmentation points located of the filtered MMG data

Segmentation was important as it reduced the computational intensity of subsequent processing steps

and improving the classification accuracy as it removed the unnecessary information such as the rest-

ing periods or additional motion which occurred outside the gesture period.

An MMG signal of a gesture event comprises of two states [38]:

• A transient state originating as a muscle goes from rest to a contraction

• A steady state originating during a constantly maintained contraction in a muscle.

Various methods have been used for segmentation such as finding the endpoint of an event and then

segmenting backwards from the end point [18]. However, segmenting backwards from the endpoint of

an MMG signal would capture mostly the steady state behaviour of the MMG signal. Therefore, in

order to differentiate between the different gestures, it was necessary to segment the gesture forward

in time from the initial point to capture the transient state of the MMG signal.

The period a of the transient state of the MMG signal from a gesture instance was found to be 600

ms, therefore a window length of 600 ms was used for the segmentation [31]. Additionally, it was

found out by Samuel Wilson that the energy of the signal does not rise above the threshold until 0.05

seconds after the beginning of the gesture, defined as time b [4]. The signal that was recorded as the

gesture for the N MMGs SN was defined as:

SN = [m∗N i−b, ......,m
∗
N i+(a−b)] (5.3)

20



Therefore, each segment consisted of 50 points before the segmentation point followed by 550 points

after the segmentation point. The collated segments can be seen in Fig. 5.12. To ensure that each

gesture instance segment of the same gesture would be similar, it was important to ensure that the

segmentation points appeared at a consistent location in the MMG signals of the different gesture

instances. This was done by visually inspecting the location of the segmentation points as shown in

Fig. 5.11.
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Figure 5.12: Segmented gesture instances which are collated into one matrix mcollated
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5.2 Feature optimisation

Obtaining an optimised set of features can be divided into two tasks:

• Feature selection

• Feature extraction

5.2.1 Feature optimisation: Feature selection

Transforming the input MMG signal into a representative feature set extracts the useful information

that is present in the MMG signal and removes the unwanted aspects and interference [41]. Some

features are robust across different kinds of noises and an appropriate feature set must be chosen to

maximise class separability. This is important for obtaining effective discrimination between different

gestures classes and for high classification accuracy [42]. There are 2 major ways to increase the

information derived from MMG recognition systems [3]:

• Obtaining information from a greater number of different muscle positions

• Optimising the feature set such as by increasing the number of features or selecting more effective

features for the data

Features are obtained from each gesture instance segment to create the total feature set used to

represent the MMG data set. Therefore, the total number of features was determined by the number

of features obtained from a gesture instance segment as well as the total number of segments present.

Due to the non-stationary behaviour of the MMG signal, it was extremely difficult to extract a single

feature which reflects the unique behaviour of an MMG signal perfectly, therefore it was desirable

to use multiple features for the MMG pattern classification. However, the inclusion of features

which do not contribute significantly to class separability may lead to a decrease in the classification

performance as the higher dimensionality of the feature set may decrease the generalisability of

the classifier [3]. Several factors were used to determine the optimum feature set chosen but the

most important factors were those of computational complexity and class discrimination [21]. The

acceptable computational complexity was limited by the response time of the system, which was

especially important for control in real-time. Features in the analysis of MMG signals can be divided

into 3 main groups:

• Time domain features

• Frequency domain features

• Time-scale domain features

A disadvantage of time domain features is that the input data is assumed to be a stationary signal,

but MMG signals are non-stationary as their statistical properties change with time in the transient

portion of the signal. Regardless of that issue, time domain features have been used widely in

engineering research due to the features in the time domain being quick and easy to obtain as the

data does not need to transform beforehand to obtain the features [43]. Therefore, to minimise the

computational lag associated with obtaining the features, time domain features were used in this

project. 10 time domain features constituting 13 values were obtained from each MMG channel (

as four different autoregressive coefficients were obtained) in the MMG gesture instance segment.

Therefore, each gesture instance segment would contain 78 (13 x 6) values to represent the features

obtained. The features used to represent the MMG signals can be seen in Table. 5.1:
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Table 5.1: Mathematical definitions of features selected for the MMG pattern recognition. Let xn rep-

resent the MMG data in a segment. ai is the auto-regressive coefficient. wn is the white noise error. N

denotes the length of the signal [3]

Feature Definition

Waveform Length (WL) WL =
N−1∑
n=1
|xn+1 − xn|

Root Mean Squared (RMS) RMS =

√
1
N

N∑
n=1

x2
n

Integrated Absolute Value (IAV) IAV = 1
N

N∑
n=1
|xn|

Mean Absolute Value (MAV) MAV = 1
N

N∑
n=1
|xn|

Variance (VAR) VAR = 1
N−1

N∑
n=1

x2
n

Interquartile Range (IQR) IQR = Q3 - Q1

Skewness (SKW) SKW = 1
N

N∑
n=1

(xn − x)3/

(
1
N

N∑
n=1

(xn − x)2
) 3

2

Wilison Amplitude (WAMP) WAMP =
N−1∑
n=1

f(|xn − xn+1|)

1, if x ≥ threshold

0, otherwise

Slope Sign Change (SSC) SSC =
N−1∑
n=2

[f [(xn − xn−1)× (xn − xn+1)]]

1, if x ≥ threshold

0, otherwise

Auto Regressive Coefficients (ai) x̂n = −
p∑

i=1

aixn−i + wn

5.2.2 Feature optimisation: Feature extraction

Following the initial selection of the MMG feature set, it was then necessary to employ a feature

extraction (also known as feature reduction) technique to reduce the dimensionality of the feature

set obtained per gesture instance. Ideally, feature extraction proceeds in a manner that reduces the

redundancies in the feature set. In addition to improving the signal and reducing the noise, feature

extraction can lead to greater generalisation in the classification and hence a higher classification

accuracy [3].

The feature extraction methods that have been implemented in this study were Principal Component

Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is an unsupervised learning feature

extraction method since it only involves a set of features X = [X1, X2,...,Xp] and no associated class

label [5]. Unsupervised learning approaches are used to find patterns or intrinsic structure within a

dataset. PCA refers to the process by which a low dimensional feature space, Y = [Y1, Y2,...,Yp],

is produced from a linear combination of the p - features of the original feature set. The linear

combination of features for the first principle component and the pth principal component can be

seen in Eqn. 5.4 and Eqn. 5.5 respectively [44]:

Y1 = a11X1 + a21X2 + .........+ an1Xn = aT1X (5.4)

Ym = a1mX1 + a2mX2 + .........+ anmXn = aTmX (5.5)
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The purpose of the low dimensional feature space in PCA is to extract the variation in the original

feature set. The first principle component (Y1) extracts the maximum variance from the original

set of features and the loading vector (a1) defines a direction in the feature space along which the

data varies the most. The second principal component (Y2) is the linear combination of X1,...,Xp

that has the maximum variance out of all linear combinations that are uncorrelated with Y1. This

constraint leads to the different principal components being orthogonal to one another. An example

of the principal components of a data set can be seen in Fig. 5.13.

Figure 5.13: Graph showing the relationship between two variables, V1 and V2. The green solid line

indicates the first principal component and the blue dashed line indicates the second principal component

[5].

In this research, the number of principal components chosen in the dimensionality reduction was 20

features, as using 20 features was shown to capture 90% of the total variance in the data. This reduced

the dimensionality of the feature set from 78 values to 20 values. An alternative feature extraction

method used was LDA. LDA is a well known technique used in pattern recognition which can be used

for both feature extraction as well as classification. It has been widely used in many applications

such as facial recognition [45] as well as gesture classification of EMG signals [25]. LDA performs

feature extraction by taking a high dimensional feature set from k different classes of data and then

finds the optimum linear combination of features that maps the raw features into a lower dimensional

space of k-1 features [5]. LDA differs from PCA as LDA is a supervised method for feature extrac-

tion. Supervised learning is a branch of machine learning, where the desired outputs are fed with

the inputs of the machine learning algorithms, so that the underlying function that maps the inputs

to the outputs can be approximated. Whereas PCA extracts the feature space which maximise the

variance of the original set of features, LDA extracts a feature space which maximises the discrimina-

tion between the different classes. This is achieved as LDA chooses the linear combination of features

which minimise the intra-class variation whilst simultaneously maximising the inter-class variation [3].
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5.3 Classification methods

Three different classifiers were tested during this work:

• Template matching

• Linear Discriminant Analysis (LDA)

• Support Vector Machine (SVM)

The template matching classifier was used after the data had been segmented whilst the LDA and

SVM classifiers were used after the feature extraction step as shown in Fig. 5.2.

5.3.1 Template matching

One initial approach taken to the classification of the data was using a template matching classification

approach where templates were constructed during the training stage. Template matching techniques

measure the similarity between a template and a sample [46]. The class of the template which had

the greatest similarity or lowest difference was the class in which the sample was classified into [5, 46].

A careful examination of the collated segmented signals in Fig. 5.12 shows that instances of the same

gesture exhibit variation from trial to trial. These variations include differences in the amplitudes

and in the waveform due to inconsistencies in the intensity and speed of the hand gesture. Due to

these variations in the MMG data, an averaging approach was used in the creation of the gesture

templates. Averaging is useful as it can reduce the effects of random noise, which leads to an improve-

ment in the signal-to-noise ratio of the template [47]. However, signals should be aligned in time,

otherwise the averaging process can lead to a blurring or loss of peaks and valleys in the signal [47].

Therefore, MMG data from gesture instances was initially aligned such that latency discrepancies

between the two MMG signals were minimised before averaging signals during template generation.

This was achieved using pairwise cross-correlation averaging. As described in research conducted by

Ravi Vaidyanathan et al [6], pairs of signals were successively averaged after finding the maximum

cross-correlation of the pair via dot product of the signals. This process was then repeated with the

mean of the pair of signals to form the template, hL(k), as show in Fig. 5.14. In Fig. 5.14, hm,i(k)

represented a signal; k =1,2, ....,N was the different time instants of a signal; i = 1,2,..., L, was the

ith gesture instance of class m, m = 1,2,. . . .M , where M was the number of gesture classes. L was

the number of signals used to build the template when using pairwise cross-correlation averaging and

hm→n(k) was the average of signals n to m after the cross-correlation.
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Figure 5.14: Pairwise cross-correlation averaging for L = 8 [6]

However, finding the optimum alignment via this approach was computationally intensive and would

not be feasible for the real-time classification purposes. Also, alignment of signals was shown not to

be a significant issue after a visual inspection of the segmentation points was done to ensure that the

segmentation point was located at the same point within the different gesture instances. Therefore,

the template generation method was changed from a pairwise cross-correlation averaging to a simple

direct average of all the gesture instances, similar to work done previously by Samuel Wilson [4].

The overall template, Soverall, was made from templates from each MMG channel. For g gesture

instances, the template for the Nth MMG channel, SN , can be seen in Eqn. 5.6 [4]:

S

SN =
1

g

g∑
j=1

sNj (5.6)

Where sNj was the jth signal used in template production from the Nth MMG. The averaging was

optimised by visually analyzing the degree of overlap of the overlapping gesture instances which

would form the template, as shown in Fig. 5.15. From Fig. 5.15, the significant overlap between

the different instances of the same gesture also reaffirms that the segmentation was successful and no

additional alignment approach was required.
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(f) MMG sensor 6 signals

Figure 5.15: 20 instances of the same gesture with the separate MMG signals overlapping

Following the creation of the template, gesture recognition was performed using an absolute differ-

ence method to measure the difference between a template and a sample to be classified. Absolute

difference measures the discrepancy between the data points of a test gesture instance and all the

gesture templates. For the test gesture signal, s(k), and the ith template Soverall,i(k), the absolute

difference Di over K points was defined as:

Di =

K∑
k=1

∣∣s(k)− Soverall,i(k)∣∣ (5.7)

The gesture would then be classified into the class where the difference, Di, was at a minimum.
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5.3.2 Linear Discriminant Analysis classification

After the dimensionality reduction of the original feature set, LDA itself can be used as a classifier.

LDA uses the lower dimensional feature space as a training set to estimate the parameters of the

discriminant function, such as the mean and the scatter of the features in the feature space. The

discriminant functions are then used to determine the decision boundary between the various classes

[5].

The classification of an observation into one of k classes was achieved by approximating the terms

present in Bayes rule which is shown in Eqn. 5.8 [2]:

P̂ (Y = k|X = x) =
P̂ (X = x|Y = k)P̂ (Y = k)

P̂ (X = x)
==

P̂ (X = x|Y = k)P̂ (Y = k)∑
j P̂ (X = x|Y = j)P̂ (Y = j)

(5.8)

P̂ (X = x|Y = k) denotes the probability distribution function that the feature X = x came from the

kth class, P̂ (Y = k) was the overall probability that a randomly chosen observation came from the

kth class and P̂ (X = x) was the overall probability that an observation X = x. P̂ (Y = k|X = x) was

the posterior probability that an observation X = x belonged to the kth class. P̂ (Y = k|X = x) was

obtained by estimating both P̂ (X|Y ) as well as the probability of each class, P̂ (Y ). In LDA, it was

assumed that P̂ (X = x|Y = k) = f̂k(x), where f̂k(x) was a multivariate normal distribution with a

general form shown by Eqn. 5.9 [5]:

fk(x) =
1

(2π)
p
2 |
∑
| 12
e−

1
2
(x−µk)

T ∑−1(x−µk) (5.9)

For the case of LDA, the feature vectors of different classes could have different mean values from

one another, however the covariance matrix of the different classes were identical and the covariance

matrix was calculated using a pooled estimate [2]. Furthermore P̂ (Y = k) = π̂k and this was estimated

by the fraction of training samples that come from the kth class. By Bayes rule, the probability of

category k, given the input feature x was:

P (Y = k|X = x) =
fk(x))πk
P (X = x)

(5.10)

The denominator term does not depend on the response k, so it was be considered as a constant. By

inputting Eqn. 5.9 and taking the logarithm of both sides, the discriminant function δ(x) was:

δk(x) = logπk −
1

2
µTk
∑−1

µk + xT
∑−1

µk (5.11)
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The input feature, x, was classified as being in the class which would give the highest value for δk(x)

[25]. The different classes of data were separated by decision boundaries based on the discriminant

functions as shown in Fig. 5.11.

Figure 5.16: LDA classification of three classes. The observations from each class have two different

features. The dashed lines are the Bayes decision boundaries and the LDA decision boundaries are

indicated using the solid black lines [5].
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5.3.3 Support Vector Machine Classifier

Support Vector Machines (SVM) are traditional two-class classifiers made by Vapnik based on the

ideas of maximising margins and mapping data into a higher dimensional subspace. Classification

occurs by taking an n-dimensional feature space as an input and then making a n-1 dimensional

hyperplane to separate the different classes [2]. The data points of the different classes which are

nearest to the hyperplane are known as Support Vectors. There are two main types of classifiers in

SVM:

• Maximal margin

• Soft margin

The aim of maximal margin classifier is to orient the hyperplane in such a way that the margin between

the hyperplane and the Support Vectors is maximised whilst ensuring that there are only observations

from a single class on either side of the hyperplane. The general form of a linear hyperplane can be

defined by Eqn. 5.12 [48]:

f(x) = ω.x+ b (5.12)

Where f(x) is the decision function used to represent the hyperplane, x is an input of dimension n,

ω is a n-dimensional vector which defines the hyperplane and b is a bias term which determines the

position of the hyperplane. The optimal hyperplane can be obtained as a solution to the optimisation

problem of minimising 1
2
(ω.ω) subject to the constraint [48]:

yi((ω.xi + b))− 1 ≥ 0, i = 1, ...., l (5.13)

Where l is the number of training examples and xi are the Support Vectors obtained from training.

The solution of the constrained quadratic programming optimisation problem can be obtained as [7]:

ω =
∑

νixi (5.14)

Which leads to the decision function being equal to [7]:

f(x) =

l∑
i=1

(x.xi + b) (5.15)

An example of a maximal margin hyperplane can be seen in Fig. 5.17.
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Figure 5.17: There are two classes of observations, shown in blue and in purple. The maximal margin

hyperplane is shown as a solid line. The margin is the distance from the solid line to either of the dashed

lines. The two blue points and the purple point that lie on the dashed lines are the Support Vectors, and

the distance from those points to the hyperplane is indicated by arrows [5].

An issue with the position of a hyperplane of maximal margin classifiers is that it can be highly

susceptible to outliers, therefore a soft margin classifier be used instead. Soft margin classifiers also

aims to maximise the margins between the nearest training examples of the different classes, however,

it can also allow observations from different classes to be on the same side of the hyperplane. This

is taken into account by using slack variables, εi, and an error penalty, C. A soft margin classifier is

generally more effective than a maximal margin classifier as it has greater robustness to individual

observations and better classifcation of most of the training observations. The soft margin hyperplane

derived will differ based on the magnitude of εi and C, as shown by Fig. 5.18
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Figure 5.18: A soft margin classifier was fit using 4 different values of the tuning parameter, C. The

largest value of C was used in the top left panel, and smaller values were used in the top right, bottom

left, and bottom right panels. When C is large, there is a high tolerance for observations being on the

wrong side of the margin, and so the margin will be large. As C decreases, the tolerance for observations

being on the wrong side of the margin decreases, and the margin narrows [5].

The optimal soft margin classifier can be obtained as a solution to the optimisation problem, where

φ(w) = 1
2
(ω.ω) + C

∑l
i=1 ξi is minimised subject to [2]:

yi(ω.xi + b)− 1 + ξi ≥ 0 (5.16)

For cases where even a soft margin linear boundary in the input space is insufficient to separate the

classes effectively, due to a non-linear distribution of data, it is possible to create a linear hyperplane

that allows for separation in a higher dimensional space. This is achieved through the use of a trans-

formation φ(x) that converts the data from a N-dimensional feature space to a higher dimension,

Q-dimensional feature space [5, 25]. This causes a non-linear boundary in the N-dimensional input

space to transform into a linear boundary in the Q-dimensional feature space as shown by Fig. 5.19.
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Figure 5.19: Conversion of non-linear low dimensional feature space to a linear high dimensional feature

space [7]

Substituting the transformation φ(x) into Eqn. 5.12 provides a new decision function which can be

used to represent a non-linear decision boundary [7]. The new decision function can be seen in Eqn.

5.17.

f(x) =

l∑
i=1

νi(φ(x).φ(xi)) + b) (5.17)

This transformation to a higher dimensional space can be provided by a kernel function. The choice

of kernel function is significant as the correct choice of kernel function can improve the classification

accuracy of the SVM. Kernel functions are similarity functions that quantify the similarity between a

test and training observation by calculating the inner product between the vectors after transforming

them to a higher transformational space [5, 7]. The kernel K(xi.xj) is defined by Eqn.5.18 [49]:

K(xi.xj) = φ(xi).φ(xj) (5.18)

In this project, 2 main types of kernels were used by my colleague, Helena Santos Sousa, during her

testing using a SVM classifier. The kernels used were [49]:

• The polynomial kernel function: K(x.xi) = [(x.xi) + 1]d

• The radial basis kernel function: K(x.xi) = exp
(
−|x−y|2

2σ2

)
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6 Classification tests

For all the classification tests conducted offline, TMMGUPPER was chosen as 20,000 (mV)2 and

TMMGLOWER was chosen as 10,000 (mV)2. For the real-time classification, a single threshold of

15,000 (mV)2 was chosen. Furthermore the segmentation window length was 600 points (600 ms of

data) for both the offline and real-time classification. Both feature extraction and classification was

completed in MATLAB R2017a for both the offline and real-time classification. The only significant

difference in the real-time analysis was that a rolling buffer was used to capture the data in real-time.

The template matching classification was achieved by using the ’Offline template generation’, ’Abso-

lute difference measure’ and the ’Offline template classification’ MATLAB scripts seen in Appendix

.E - G. The offline LDA classification was achieved using the ’Offline LDA classification’ MATLAB

Script seen in Appendix. H. The real-time LDA classification was achieved using the ’Real-time

extracting training features’ and ’Real-time LDA classification’ MATLAB functions shown in Ap-

pendix. I and J. The LDA classification algorithms were based on Professor Adrian Chan’s pattern

recognition library available at http://www.sce.carleton.ca/faculty/chan [24].

6.1 Template matching and statistical classification comparison

For the comparison between the template matching and the statistical classification, the author

performed 50 instances of the gestures shown in Fig. 4.2. The segmented gestures instances were

split into a training set consisting of 40 % of the gestures and a test set consisting of the remaining

60%. The template matching classification approach involved using the absolute difference between

a sample and a template to perform a classification. As the accuracy of the template matching was

not above 50 % when more than 4 gestures were used, only 4 gestures were used in the offline analysis

when using the gesture classification. These gestures were:

1. Open

2. Close

3. Thumbs up

4. Point

These gestures were chosen as they provide a mixture of large and small gestures which would increase

the likelihood of obtaining distinct templates which would lead to high classification accuracy. Table.

6.1 summarises the results of the offline classification.
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Table 6.1: Results of the offline classification of the four gestures using a template matching approach

Gesture recognised

Open Close Thumbs Up Point

Actual gesture

Open 80.0 % 0.0 % 10.0 % 10.0 %

Close 3.3 % 86.7 % 3.3 % 6.7 %

Thumbs Up 10.0 % 0.0 % 83.3 % 6.6 %

Point 0.0 % 0.0 % 6.7 % 93.3 %

Total accuracy 85.8 %

For the real-time classification, as the accuracy of the template matching was not above 50 % for

more than three gestures, only three gestures were used in the real-time classification. The 3 gestures

used in the real-time classification were:

1. Open

2. Close

3. Point

Table. 6.2 summarises the results of the real-time classification using the template matching approach.

Table 6.2: Results of the real-time classification of the three gestures using a template matching approach

Gesture recognised

Open Close Point

Actual gesture

Open 66.7 % 0.0 % 33.3 %

Close 0.0 % 86.7% 13.3 %

Point 0.0 % 0.0 % 100.0 %

Total accuracy 84.5 %

Similarly, results were also obtained for the offline and real-time classification of the seven gestures

shown in Fig. 4.2. The offline and real-time classification results can be seen in Table. 6.3 and 6.4.
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Table 6.3: Results of the offline classification of the seven gestures using LDA classifications

Gesture recognised

Open Close First

finger

pinch

Second

finger

pinch

Thumbs

up

Point Finger

roll

Actual

Open 96.3 % 1.2 % 0.0 % 2.5 % 0.0 % 0.0 % 0.0 %

gesture

Close 0.0 % 98.8 % 0.0 % 0.0 % 0.0 0.0 % 1.2 %

First

finger

pinch

0.0 % 0.0 % 98.8 % 0.0 % 0.0 % 1.2 % 0.0 %

Second

finger

pinch

0.0 % 0.0 % 18.8 % 71.2 % 10.0 % 0.0 % 0.0 %

Thumbs

Up

0.0 % 0.0 % 0.0 % 2.5 % 90.0 % 7.5 % 0.0 %

Point 1.3 % 0.0 % 6.3 % 0.0 % 11.2 % 81.2 % 0.0 %

Finger

roll

2.5 % 0.0 % 6.6 % 0.0 % 0.0 % 0.0 % 97.5 %

Total accuracy 90.5 %

From the results seen in Table. 6.1 - 6.4, it can be seen that real-time classification accuracy was

generally slightly lower than offline classification accuracy. This was due to the offline classification

using gestures at different levels of fatigue for training, whilst real-time classification would generally

have training data from gestures at low level of fatigue whilst testing data would be obtained later in

time where the level of fatigue would be higher. Furthermore LDA had a much higher classification

accuracy in both the offline and real-time classification than the templalte matching classification. As

a result, the following tests focused on using statistical classifiers such as LDA and SVM rather than

a template matching classifier. To assess the suitability of the LDA and SVM classifiers for MMG

hand gesture analysis, 3 different investigation were conducted offline. During these investigations,

the results of the SVM classification was performed by the author’s colleague, Helena Santos Sousa.

Several different kernels were tested and it was seen that the linear and quadratic kernels yielded the

results of highest accuracy.
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Table 6.4: Results of the real-time classification of the seven gestures using LDA classifications

Gesture recognised

Open Close First

finger

pinch

Second

finger

pinch

Thumbs

up

Point Finger

roll

Actual

Open 100.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

gesture

Close 0.0 % 93.3 % 0.0 % 6.7 % 0.0 % 0.0 % 0.0 %

First

finger

pinch

0.0 % 6.6 % 66.7 % 26.7 % 0.0 % 0.0 % 0.0 %

Second

finger

pinch

0.0 % 0.0 % 6.7 % 93.3 % 0.0 % 0.0 % 0.0 %

Thumbs

Up

10.0 % 0.0 % 0.0 % 0.0 % 86.7 % 3.3 % 0 %

Point 0.0 % 0.0 % 23.3 % 16.7 % 0 % 60.0 % 0 %

Finger

roll

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 100.0 %

Total accuracy 85.7 %
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6.2 Preliminary testing

Before starting the 3 different investigations with the different classifiers, it was necessary to:

• Compare the effectiveness of the different feature extraction methods

• Find the optimum number of samples for offline training.

These two goals were achieved by comparing the classification accuracy as a function of the number of

the training examples when using a LDA classifier with 3 different feature extractions. The different

feature extractions were:

• LDA reduction to a 6 dimensional space

• PCA reduction to 6 dimensional space

• PCA reduction to 20 dimensional space which corresponds to 90% of the explained variance.

The classification results of Subject 1 when using the different feature extractions can be seen in Fig.

6.1 whilst the results for the other test subjects can be seen in Appendix K.
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Figure 6.1: Classification accuracy as a function of training examples for 3 different feature extractions

From Fig. 6.1, the classification accuracy when using the PCA reduction was generally better than

LDA reduction at lower training samples as even when the PCA and LDA both use a 6-dimensional

subspace, the PCA has a much higher classification accuracy. However, LDA quickly improved and

obtained a greater accuracy than even the PCA reduction to a 20-dimensional space. LDA achieving a

higher classification accuracy was expected as LDA is a supervised dimensionality reduction whereas

PCA is unsupervised. Furthermore, it can be seen that classification initially rapidly improved at

a lower number of training samples and then generally plateaued at higher values such as 70 to

80 training samples. Therefore, 80 training samples was used for the first investigation and LDA

dimensionality reduction was used for all the different tests.
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6.3 User specific classifiers

The first investigation involved user specific classifiers being trained for each test subject. The dataset

of each subject consisted of 100 samples for each gesture and it was divided into 80 % training and 20

% test sets as a training set of 80 samples was shown to be effective during preliminary testing. Due

to the limited amount of data present from each individual, the user specific classifiers were tested

using k-fold cross validation. K-fold cross validation enables all the data to be used for the training

of the classifier as well as in testing, and it is a widely used technique to estimate the generalisation

error of a classifier. K-fold cross validation consists of [5, 50]:

• Dividing the sample data into k equal sized subsets. Each subset is referred to as a fold. Let

the folds be named as f1,f2,. . . .,fk.

• For i = 1:k, perform the classification using the fold fi as a test set and keep the remaining k-1

folds as a training set.

The overall classification accuracy was calculated by the average of the k predicted accuracies. The

results of the user-specific classifiers for the different subjects using five-fold cross validation can be

seen in Table. 6.5.

Table 6.5: User specific classification error for the different classifiers

Subject

Accuracy

for LDA

(%)

Accuracy

for Linear

SVM (%)

Accuracy

for

Quadratic

SVM (%)

1 91.8 98.6 99.3

2 84.5 99.3 99.3

3 93.7 100.0 100.0

4 89.9 99.3 97.9

5 96.9 100.0 100.0

6 93.1 100.0 100.0

Average 91.7 99.5 99.4

From the results of the first test, it can be seen that the LDA, linear SVM and quadratic SVM

classifier were able to achieve high accuracies of 84.5 to 96.9 % , 98.6 to 100.0 % and 97.9 to 100.0 %

respectively. This suggests that both the LDA and SVM classifiers were easily able to find distinct

patterns in the data when a single test subject provides 80 instances of data for each gesture as the

training set.
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6.4 Pooled dataset

The second investigation aimed to assess the applicability of using a pooled dataset for testing hand

gesture classification on new users. This involved collating data from 5 of the test subjects as a

training data set and then using the data from the sixth subject as a test set. This process was

repeated until data from each subject was used as a testing set against classifiers which had not been

trained on the testing subject’s data. The results of the classification using the pooled dataset for

training of the classifiers and testing on unseen subjects can be seen in Table. 6.6

Table 6.6: Classification error when training the different classifiers using a pooled dataset and testing

on unseen subjects

Subject

Accuracy

for LDA

(%)

Accuracy

for Linear

SVM (%)

Accuracy

for

Quadratic

SVM (%)

1 40.6 35.4 33.3

2 33.1 65.7 70.3

3 18.0 26.0 14.1

4 37.7 31.4 30.3

5 31.6 65.9 70.2

6 31.6 12.0 14.0

Average 32.1 39.4 38.7

From Table. 6.6, it can be seen that the accuracy of the classifiers were significantly less and the

range was significantly higher than the user-specific classifiers as there was at least a 50% decrease

in the average classification accuracy. This behavior differs from that seen in Needham et al where

the accuracy of the user-specific testing was low whilst the pooled dataset gave high accuracies [50].

This difference could be due to the gait of different individuals being similar to one another whilst

there being more variation in performing hand gestures. Another possible reason for the discrepancy

in the findings could be that in the work produced by Ashwin et al, there was less user-specific data

as there fewer instances per gait per individual meaning the user-specific classifiers were less effective.

However, the number of test subjects was twice the number used in this work, which could mean that

the SVM algorithm was able to get a better generalisation of the behaviour of the different muscle

movements whilst in this case the data was more specialised for an individual.
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6.5 Pooled dataset supplemented by user data

The third investigation aimed to quantify the benefit of introducing a small quantity of subject specific

data to the pooled data set. This was done, by removing 20 % of the previously unseen participant’s

data from the test set and adding it to the pooled data set. The classifiers were then tested on the

remaining data in the test set. The effect of this can be seen by comparing the classification accuracy

of the pooled data set before and after the addition of the user-specific data. This can be seen for

the different classifiers in Tables. 6.7 - 6.9.

Table 6.7: Classification error for the LDA classifier when training using a pooled dataset before and

after being supplemented by user-specific data

Subject
Accuracy when trained on

generic pooled data (%)

Accuracy when training on

generic pooled data

supplemented by user data (%)

1 40.6 51.1

2 33.1 38.4

3 18.0 33.6

4 37.7 43.7

5 31.6 44.7

6 31.6 42.3

Average 32.1 42.3

Table 6.8: Classification error for the linear SVM classifier when training using a pooled dataset before

and after being supplemented by user-specific data

Subject
Accuracy when trained on

generic pooled data (%)

Accuracy when training on

generic pooled data

supplemented by user data (%)

1 35.4 61.6

2 65.7 62.3

3 26.0 60.7

4 31.4 60.7

5 65.9 62.3

6 12.0 26.3

Average 39.4 55.7
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Table 6.9: Classification error for the Quadratic SVM classifier when training using a pooled dataset

before and after being supplemented by user-specific data

Subject
Accuracy when trained on

generic pooled data (%)

Accuracy when training on

generic pooled data

supplemented by user data (%)

1 33.3 67.0

2 70.3 68.6

3 14.1 64.6

4 30.3 62.7

5 70.2 68.8

6 14.0 28.2

Average 38.7 60.0

From Table. 6.7 - 6.9, it can be seen that adding in user-specific data, the average accuracy increased

from 32.1 to 43.5 %, 39.4 to 55.7 % and 38.7 to 60.0 % for the LDA, linear SVM and Quadratic SVM

respectively. This shows that adding supplementary user-specific data to the training set leads to an

increase in the average accuracy for all the classifiers. This increase in accuracy was likely due to the

increase in the generalisation of the classifier from the increased number of different individuals used

in the training set but it also could be due to the different instances of a user being similar to one

another and so test instances were more likely to be recognised if the user data was present in the

training set.
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7 Serious game

7.1 Game design

The Serious game was designed to aid the rehabilitation of individuals with difficulty in the control

of their upper-limbs. The Serious game involved an individual controlling the movement of virtual

Kuka robot arm via the position of 2 IMUs which would control different joints of the robot. The

Kuka robot can be seen in Fig. 7.1

Figure 7.1: Kuka robot arm alongside transparent avatar used to aid the user in controlling the movement

of the Kuka robot

The kinematics of the Kuka robot was coded previously by Samuel Wilson. When the Kuka robot

would become sufficiently close to either of the 2 objects, a plate or a ball, the object would glow red

and be picked up once the NU interface recognised the required gesture performed by the user. This

can be seen in Fig. 7.2a. Following the object being picked up by the Kuka robot, once the picked

up object was sufficiently close enough to the goal which was present in the middle of the table, the

object would glow green and it could be placed in the goal after the recognition of an ’Open’ gesture

by the user. This can be seen in Fig. 7.2b. This process of picking up an object and placing it in

the goal would be repeated for ten objects before the game would be completed. The NU interface

was trained using 30 gesture instances for each of the 3 gestures and the data was classified using the

LDA classifier whilst using a LDA feature extraction. The hardware required for this game consisted

of two IMUs, 6 MMG sensors, an Oculus rift headset and 2 rift controllers. The hardware can be

seen in Fig. 7.3
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(a) Ball close to Kuka arm (b) Plate close to goal

Figure 7.2: Change in state of the objects to represent proximity to object and goal

Figure 7.3: Author using the NU interface along with the Oculus hardware

44



7.2 Results of the Serious game

The performance of the player of the Serious game was analysed by looking at four criteria:

• Time required to grab an object

• Time required to place in goal (includes grabbing object and placing in goal)

• Number of actions used to grab an object

• Number of actions used to put object in goal (includes actions used to grab object and place in

goal)

The Serious game was completed using the motion and muscle sensing NU interface as well as the

Oculus Rift Controllers. The game was completed 5 times when using the NU interface and the Rift

controllers by the Author.

The results of the first trial of the Serious game using the Rift Controllers can be seen in Table.

7.2 and the results for the subsequent trials can be seen in Appendix L. The results of the Serious

game when using the Rift Controllers show that the game was relatively simple for an able-bodied

individual as the time take to place object in the goal was generally less than 10 seconds and the

number of actions used to put object in goal was generally 2 whilst some mistakes can occur in the

button pressed making this value increase to 3 or 4. The results of the first trial of the game using

the NU interface can be seen in Table. 7.3, whilst the other results can be seen in Appendix M. The

IMU motion control enabled the Kuka robot to reach the objects relatively quickly, therefore the

time taken to grab an object or place an object in the goal mostly reflects the time taken for the NU

interface to recognize the correct gesture required to perform the desired action.

The time taken to pick up an object varied from 1.17 to 79.4 seconds whilst the time to place an

object in the goal varied from 3.40 to 82.69 seconds. This large variation in the results was most likely

due to the inconsistency of the gestures instances during the training phase. This could be suggested

as the results from the NU interface improved during the later trials when the author became more

familiar with performing the gestures in a consistent manner. The general trend in the Table. 7.3 and

Appendix M showed that the time taken and the number of actions performed generally increased

for the objects later on in the trial. This could be due to the effect of fatigue lowering the gesture

classification. Furthermore, the movement of the user’s arm to different positions was also likely to

affect the gesture recognition accuracy which could be the reason for poor gesture classification for

objects early on in a trial.
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Table 7.1: Comparison between the results of the game when using the NU interface and Oculus rift

controllers

Trial

Average

time to

grab an

object (s)

Average

time to

place

object in

goal (s)

Average

number of

actions to

grab

object

Average

number of

actions

used to

put object

in goal

NU interface 1 25.15 30.74 5.4 6.7

NU interface 2 16.64 18.00 2.2 3.5

NU interface 3 12.64 24.21 1.5 3.1

NU interface 4 6.020 17.47 1.2 2.3

NU interface 5 4.29 7.78 1.4 2.2

Rift controllers 1 3.09 4.52 1.2 2.2

Rift controllers 2 2.75 3.64 1.2 2.2

Rift controllers 3 5.08 8.22 1.7 2.7

Rift controllers 4 3.19 4.78 1.2 2.3

Rift controllers 5 3.42 4.39 1.4 2.4

NU interface

Average
12.94 19.64 2.3 3.6

Rift controllers

Average
3.5 5.1 1.3 2.4
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Table 7.2: Measurements from game when using the Rift controllers for the first trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 6.42 7.84 1 2

2 2.30 3.61 1 2

3 3.78 5.15 1 2

4 2.54 4.29 1 2

5 3.81 5.43 2 3

6 3.59 5.09 1 2

7 2.32 3.32 2 3

8 3.65 5.70 1 2

9 1.01 2.02 1 2

10 1.49 2.72 1 2

Table 7.3: Measurements from game when using the NU interface for the first trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 17.75 20.72 3 4

2 8.52 10.83 3 4

3 11.70 37.51 2 5

4 15.86 17.93 5 6

5 27.89 30.85 1 2

6 39.37 44.85 6 7

7 17.38 21.76 3 4

8 1.87 5.13 1 3

9 31.7 35.1 13 14

10 79.4 82.69 17 18
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8 Conclusion and future work

Serious games have been shown to be important in the rehabilitation of certain specific individuals,

such as those stroke victims and those with difficulty controlling their upper limbs, through an en-

gaging and practical application. A Serious game has been designed for individuals such as stroke

victims with difficulties controlling their upper-limbs. Completing the game with the NU interface

was tested 5 times by the author. It was shown that initially the game was difficult to complete due to

a low classification accuracy due to performing gestures in an inconsistent manner and the variation

of the MMG signals because of the variation of the user’s arm. After becoming more familiar with

the Serious game and performing gestures in a consistent manner, the time required complete the

task had decreased. Due to the variety of different classifiers available to train the game, it was first

necessary to compare the effectiveness of template based and statistical classification to see which

one achieves higher classification accuracy. The statistical classifier was more effective as it was able

to achieve an average accuracy of 90.5 % and 85.7 % for the offline and real-time classification of

seven gestures whilst template matching only achieved 85.8 % and 84.5 % for 4 and 3 gestures. After

deciding on using a statistical classifier for the game, three investigations were conducted to see var-

ious ways to train the statistical classifier for the game. The first study examined using 80 instances

of user specific data for the training of each gesture and this resulted in average accuracies above 90

% for the LDA, linear SVM and quadratic SVM classifiers. However, training with a large number

of gesture instances can be often be time consuming, fatiguing and mundane, especially to someone

with upper-limb difficulties. A potential solution for the need for a large sets of subject-specific

training data was to use a generic pooled data set of 5 different training subjects for the testing of an

unseen user. But this lead to an average classification accuracy below 50 % for the 7 gestures which

shows that each individuals MMG signals are distinct from one another due to factors such as skin

thickness, muscularity and way of performing the gesture and it is difficult to interpret a pattern in

the data when using gesture instances from only five different individuals in the training set. The

third investigation examined the effect of supplemented the generic pooled dataset with a small set of

subject-specific data which increased the classification accuracy of the pooled dataset by at least 10

%, although the accuracy was still not able to reach that of the subject specific dataset. Throughout

the 3 investigations it can be seen that the SVM classifiers attained higher classification accuracy

than the LDA classifier which agrees with the literature and suggests MMG data is not normally

distributed [50].

Following this study, a more comprehensive dataset should be gathered which contains data from

larger number of subjects to see if this enables LDA and SVM classifiers to find a clear pattern in

the different gestures which goes beyond a specific individual. Additionally, EMG and MMG could

perhaps be used in conjunction with the same total number of sensors to see if there is a synergistic

effect. Furthermore, additional classifiers such as Neural Networks could be tested to see if they are

better able to find patterns in the pooled dataset which can enable higher classification accuracy from

the pooled dataset. Finally, to test the robustness of the classifiers, testing should also be done on

transradial amputees and individuals with difficulty with upper-limb control. The game should be

further optimised to perform a larger number of gestures to allow an individual to enjoy more variety

and a greater degree of challenge.
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Appendices

Appendix A RawMMG data extraction - MATLAB Script

1f unc t i on A = data ( f i l ename ) % Function which ex t r a c t s MMG data from the

raw data

2raw = csvread ( f i l ename ) ; % Reads the raw data saved the MMG and IMU

3data = ze ro s ( s i z e ( raw , 1 ) ,8 ) ; % Creates an array o f z e r o s

4

5f o r n = 1 : s i z e ( raw , 1 )

6f o r m = 10:17

7data (n ,m−9) = raw (n , (m∗2) ) ∗256+raw (n , (m∗2)+1) ; % Extracts the MMG data

8i f ( data (n ,m−9)>(2^15)−1) ;

9data (n ,m−9) = data (n ,m−9 ) − 2^16;

10end

11end % This produces the input data . Need to now put the input data in to a

butterworth bandpass f i l t e r .

12end % The input data f o r each MMG i s in i t s own pa r t i c u l a r column .

13re levant_data = ze ro s ( s i z e ( raw , 1 ) ,6 ) ;

14re levant_data ( : , 1 ) = data ( : , 1 ) ; % MMG 1

15re levant_data ( : , 2 ) = data ( : , 2 ) ; % MMG 2 data

16re levant_data ( : , 3 ) = data ( : , 3 ) ; % MMG 3 data put in to the array .

17re levant_data ( : , 4 ) = data ( : , 4 ) ; % MMG 4

18re levant_data ( : , 5 ) = data ( : , 5 ) ; % MMG 5 data

19re levant_data ( : , 6 ) = data ( : , 6 ) ; % MMG 6 data

20l i n = l i n s p a c e (1 , s i z e ( raw , 1 ) , s i z e ( raw , 1 ) ) ; % Made a vec to r which has a

range o f s i z e ( raw , 1 )

21A = relevant_data ;

Appendix B Filtering - MATLAB Script

1f unc t i on C = Fi l ter ing_only_of_or ig ina l_data (M)

2[ b , a ] = butte r ( 1 , [ 1 100 ]/(1000/2) , ’ bandpass ’ ) ; % This i s a 2nd order

bandpass f i l t e r ( as n = 1 ,

3%The lower c u t o f f f requency i s 1 hz and a h igher c u t o f f f requency i s 100

hz .

4%Sampling f requency i s 1000 hz

5f i l t e r ed_da ta = f i l t e r (b , a ,M( : , : ) ) ;

6C = f i l t e r ed_da ta ;
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Appendix C Segmenting - MATLAB Script

1f unc t i on B = Segmentation_moving_data_600_10_instances (M)

2% This func t i on f i n d s po in t s which corresponds to ge s tu r e i n s t an c e s .

3% The f i l t e r e d data i s then segmented at these segmentat ion po in t s .

4array = ze ro s (1 , 10 ) ;% Made an array o f zero as t h i s w i l l

5index = 1 ; % Sta r t i ng index

6windowlength = 600 ; % Length o f the segmentat ion window

7

8i = 1000 ; % I t e r a t i o n s t a r t s at po int 1000 . The f i r s t 1000 ms i s not used

.

9

10whi le i <= s i z e (M, 1 )− windowlength −51 && index < 11 ;

11% i t e r a t e s t i l l the end o f the data in the f i l e or u n t i l 10

segmentat ion po in t s are found

12i f M( i , 1 )+ M( i , 2 )+M( i , 3 )+ M( i , 4 )+ M( i , 5 )+M( i , 6 ) > 20000

13%Looks i f the sum of the channe l s at a po int in time exceeds the

th r e sho ld

14array (1 , index ) = i ; % Marks the segmenation po int

15index = index + 1 ;

16i = i + 1549 ; % Skips 1549 ms o f data a f t e r a segmentat ion po int

17e l s e

18i = i + 1 ;

19end

20end

21i f array (1 , 10 ) == 0 % This checks i f the re are 10 segmentat ion po in t s

22% , I f the re are not 10 segmentaiton points , the i t e r a t i o n occurs

from

23% the s t a r t wh i l s t us ing the lower th r e sho ld

24array = ze ro s (1 , 10 ) ;

25index = 1 ;

26i = 1000 ;

27

28e l s e

29index = 11 ;

30end

31whi le i <= s i z e (M, 1 )−windowlength −51 && index < 11% I t e r a t e s through

the data

32i f M( i , 1 ) + M( i , 2 ) + M( i , 3 )+ M( i , 4 )+ M( i , 5 ) + M( i , 6 ) > 10000 ;

33% Checks i f the sum of the channe l s exceed the lower th r e sho ld o f 10 ,000

34array (1 , index ) = i ;

35index = index + 1 ;

36i = i + 1549 ; % Skips 1549 ms o f data a f t e r the segmentat ion
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point

37e l s e

38i = i +1;

39end

40end

41% This part o f the code checks i f the re i s 10 segmentat ion po in t s

42% I f the re i s not a tenth segmentat ion point , then the 9 th segementat ion

43% point i s used twice . This i s repeated f o r the other indexes a l s o .

44i f array (1 , 2 ) == 0 ;

45array (1 , 2 ) = array (1 , 1 ) ;

46end

47i f array (1 , 3 ) == 0 ;

48array (1 , 3 ) = array (1 , 2 ) ;

49end

50i f array (1 , 4 ) == 0 ;

51array (1 , 4 ) = array (1 , 3 ) ;

52end

53i f array (1 , 5 ) == 0 ;

54array (1 , 5 ) = array (1 , 4 ) ;

55end

56i f array (1 , 6 ) == 0 ;

57array (1 , 6 ) = array (1 , 5 ) ;

58end

59i f array (1 , 7 ) == 0 ;

60array (1 , 7 ) = array (1 , 6 ) ;

61end

62i f array (1 , 8 ) == 0 ;

63array (1 , 8 ) = array (1 , 7 ) ;

64end

65i f array (1 , 9 ) == 0 ;

66array (1 , 9 ) = array (1 , 8 ) ;

67end

68i f array (1 , 10 ) == 0 ;

69array (1 ,10 ) = array (1 , 9 ) ;

70end

71

72B = array ; % This i s the output array

73end
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Appendix D Processing data - MATLAB Script

1f unc t i on A = processing_data_600_10_instances_LDA ( f i l ename ) ; % Filename

i s the input

2% Function used to f i l t e r , square , segment and perform a moving average on

3% the data .

4windowlength = 600 ; % S i z e o f the segmentat ion window

5or ig ina l_data = data ( f i l ename ) ; % Extracts the raw data from the input

f i l e

6on ly_f i l t e red_data = Fi l ter ing_only_of_or ig ina l_data ( or i g ina l_data ) ; %

F i l t e r s the raw data

7f i l t e red_squared_data = only_f i l t e red_data .^2 ; % Squares the f i l t e r e d

data

8moving_average_original_data = movmean( f i l tered_squared_data , [ 0 150 ] , 1 ) ;

%

9% This c a l c u l a t e s a 150 po int forward moving average on the squared

f i l t e r e d data .

10segmentat ion_points = Segmentation_moving_data_600_10_instances (

moving_average_original_data ) ;

11% This c a l c u l a t e s the segmentat ion po in t s based on the po in t s in which

12% moving average data exceeds the th r e sho ld

13

14data_array = ze ro s ( windowlength ∗10 ,6) ;

15% This c o l l a t e s the 10 ge s tu r e i n s t an c e s in a f i l e and c o l l a t e s i t

16

17f o r i = 0 :9

18

19data_array (1+(windowlength∗ i ) : windowlength+(windowlength∗ i ) , 1 : 6 ) =

f i l te red_squared_data ( segmentat ion_points (1 , i +1)−50:

segmentat ion_points (1 , i +1)+windowlength −51 ,1:6) ;

20% This uses the segmentat ion po in t s to c o l l a t e the 10 ge s tu r e i n s t an c e s .

21end

22A = data_array ;

23end
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Appendix E Offline template generation- MATLAB Script

1f unc t i on A =

Overlapping_instances_fi l tered_average_600_10_instances_confuse (

samples )% This func t i on gene ra t e s the sample names in a random order

which can then be used f o r the t e s t data and input data

2i n s t an c e s = 30 ;

3

4fu l l_data_array = ze ro s (600 ,6∗ i n s t an c e s )

5% Looks at the d i f f e r e n t f i l e s from the input ’ samples ’

6f i l ename1 = samples (1 ) . name

7f i l ename2 = samples (2 ) . name

8f i l ename3 = samples (3 ) . name

9

10% Co l l a t e s the g e s tu r e s i n s t an c e s in the d i f f e r e n t f i l e s

11data_array_1 = processing_data_600_10_instances_LDA ( f i l ename1 )

12data_array_2 = processing_data_600_10_instances_LDA ( f i l ename2 )

13data_array_3 = processing_data_600_10_instances_LDA ( f i l ename3 )

14

15% Adds the c o l l a t e d ge s tu r e i n s t an c e s in to one l a r g e array o f data

16fu l l_data_array ( 1 : 6 0 0 , 1 : 6 0 ) =data_array_1 ( 1 : 6 0 0 , 1 : 6 0 )

17fu l l_data_array ( 1 : 6 00 , 6 1 : 1 20 ) =data_array_2 ( 1 : 6 0 0 , 1 : 6 0 )

18fu l l_data_array (1 : 600 , 121 : 180 ) =data_array_3 ( 1 : 6 0 0 , 1 : 6 0 )

19

20%Saves the value from MMG1 and makes an average o f the se va lue s

21MMG1 = ze ro s (600 , i n s t an c e s )

22MMG1 = ful l_data_array ( 1 : 6 0 0 , 1 : 6 : i n s t an c e s ∗6)

23average_MMG1 = mean(MMG1, 2 ) % Mean(MMG1, 2 ) makes the mean o f the data

along the rows making a one new column vector

24p lo t (MMG1)

25

26%Saves the value from MMG2 and makes an average o f the se va lue s

27MMG2 = ze ro s (600 , i n s t an c e s )

28MMG2 = ful l_data_array ( 1 : 6 0 0 , 2 : 6 : i n s t an c e s ∗6)

29average_MMG2 = mean(MMG2, 2 )

30

31%Saves the value from MMG3 and makes an average o f the se va lue s

32MMG3 = ze ro s (600 , i n s t an c e s )

33MMG3 = ful l_data_array ( 1 : 6 0 0 , 3 : 6 : i n s t an c e s ∗6)

34average_MMG3 = mean(MMG3, 2 )

35

36%Saves the value from MMG4 and makes an average o f the se va lue s

37MMG4 = ze ro s (600 , i n s t an c e s )
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38MMG4 = ful l_data_array ( 1 : 6 0 0 , 4 : 6 : i n s t an c e s ∗6)

39average_MMG4 = mean(MMG4, 2 )

40

41%Saves the value from MMG5 and makes an average o f the se va lue s

42MMG5 = ze ro s (600 , i n s t an c e s )

43MMG5 = ful l_data_array ( 1 : 6 0 0 , 5 : 6 : i n s t an c e s ∗6)

44average_MMG5 = mean(MMG5, 2 )

45f i g u r e ; p l o t (MMG5)

46

47%Saves the value from MMG6 and makes an average o f the se va lue s

48MMG6 = ze ro s (600 , i n s t an c e s )

49MMG6 = ful l_data_array ( 1 : 6 0 0 , 6 : 6 : i n s t an c e s ∗6)

50average_MMG6 = mean(MMG3, 2 )

51f i g u r e ; p l o t (MMG6)

52

53% Creat ion o f template from the mean o f each channel

54Template = ze ro s (600 , i n s t an c e s )

55Template ( : , 1 ) = average_MMG1 ( : , 1 )

56Template ( : , 2 ) = average_MMG2 ( : , 1 ) ;

57Template ( : , 3 ) = average_MMG3 ( : , 1 )

58Template ( : , 4 ) = average_MMG4 ( : , 1 )

59Template ( : , 5 ) = average_MMG5 ( : , 1 ) ;

60Template ( : , 6 ) = average_MMG6 ( : , 1 )

61f i g u r e ; p l o t ( Template )

62A = Template
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Appendix F Absolute difference measure- MATLAB Script

1f unc t i on B = Euclidean_norm_initial_point_no_dot_product_6_gestures (

ins tance1 ,M1,M2,M3,M4,M5,M6) % The inputs w i l l be the p a r t i c u l a r

i n s t ance and the 5 template matr i ce s

2% This l ooks at the abso lu t e d i f f e r e n c e between a in s t anc e and the

d i f f e r e n t templates

3% Finds the sum of the abso lu t e d i f f e r e n c e between in s t ance and template

1

4absolute_dif ference1_M1 = abs ( dif ference1_M1 )

5summation1_M1 = sum( absolute_dif ference1_M1 )

6euclidean_norm1_M1 = sum(summation1_M1)

7

8% Finds the sum of the abso lu t e d i f f e r e n c e between in s t ance and template

2

9dif ference1_M2 = ins tance1 − M2

10absolute_dif ference1_M2 = abs ( dif ference1_M2 )

11summation1_M2 = sum( absolute_dif ference1_M2 )

12euclidean_norm1_M2 = sum(summation1_M2)

13

14% Finds the sum of the abso lu t e d i f f e r e n c e between in s t ance and template

3

15dif ference1_M3 = ins tance1 − M3

16absolute_dif ference1_M3 = abs ( dif ference1_M3 )

17summation1_M3 = sum( absolute_dif ference1_M3 )

18euclidean_norm1_M3 = sum(summation1_M3)

19

20% Finds the sum of the abso lu t e d i f f e r e n c e between in s t ance and template

4

21dif ference1_M4 = ins tance1 − M4

22absolute_dif ference1_M4 = abs ( dif ference1_M4 )

23summation1_M4 = sum( absolute_dif ference1_M4 )

24euclidean_norm1_M4 = sum(summation1_M4)

25

26% Finds the sum of the abso lu t e d i f f e r e n c e between in s t ance and template

5

27dif ference1_M5 = instance1− M5

28absolute_dif ference1_M5 = abs ( dif ference1_M5 )

29summation1_M5 = sum( absolute_dif ference1_M5 )

30euclidean_norm1_M5 = sum(summation1_M5)

31

32% Finds the sum of the abso lu t e d i f f e r e n c e between in s t ance and template

6
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33dif ference1_M6 = instance1− M6

34absolute_dif ference1_M6 = abs ( dif ference1_M6 )

35summation1_M6 = sum( absolute_dif ference1_M6 )

36euclidean_norm1_M6 = sum(summation1_M6)

37

38%Makes an array o f a l l the d i f f e r e n t sum of d i f f e r e n c e s

39Values = [ euclidean_norm1_M1 ; euclidean_norm1_M2 ; euclidean_norm1_M3 ;

euclidean_norm1_M4 ; euclidean_norm1_M5 ; euclidean_norm1_M6 ]

40% Finds the minimum value and which template has the minimum value

41[M, I ] = min ( Values )

42B = I

Appendix G Offline template classification- MATLAB Script

1% Number o f i n s t an c e s

2g e s tu r e s = 6 ;

3

4% Dataset f o r g e s tu r e 1

5rand_data1 = tra in ing_tes t_datase t ( ’G1 ’ ) ; % Generation o f the samples in

a random order

6tra in ing_samples = 3 ; % 30 i n s t an c e s used as 3 f i l e s used

7

8tra in ing_data1 = rand_data1 ( 1 : tra in ing_samples ) ;

9% Test data

10test_data1 = rand_data1 ( tra in ing_samples +1:10) ;

11% Creates a template f o r Gesture 1 from the t r a i n i n g data

12t1 = Overlapping_instances_fi l tered_average_600_10_instances_confuse (

tra in ing_data1 ) ; % Generation o f the template from the f i r s t 8 random

samples

13

14%Dataset f o r g e s tu r e 2

15rand_data2 = tra in ing_tes t_datase t ( ’G2 ’ ) ;

16% Gesture 2 t r a i n i n g data

17tra in ing_data2 = rand_data2 ( 1 : tra in ing_samples ) ;

18% Gesture 2 t e s t data

19test_data2= rand_data2 ( tra in ing_samples +1:10) ;

20% Creates a template f o r Gesture 1 from the t r a i n i n g data

21t2 = Overlapping_instances_fi l tered_average_600_10_instances_confuse (

tra in ing_data2 ) ;

22

23

24% Dataset f o r g e s tu r e 3

25rand_data3 = tra in ing_tes t_datase t ( ’G3 ’ ) ;
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26tra in ing_data3 = rand_data3 ( 1 : tra in ing_samples ) ;

27test_data3= rand_data3 ( tra in ing_samples +1:10) ;

28% Generation o f g e s tu r e 3 template

29t3 = Overlapping_instances_fi l tered_average_600_10_instances_confuse (

tra in ing_data3 ) ;

30

31% Dataset f o r g e s tu r e 4

32rand_data4 = tra in ing_tes t_datase t ( ’G4 ’ ) ;

33tra in ing_data4 = rand_data4 ( 1 : tra in ing_samples ) ;

34test_data4= rand_data4 ( tra in ing_samples +1:10) ;

35% Generation o f g e s tu r e 4 template

36t4 = Overlapping_instances_fi l tered_average_600_10_instances_confuse (

tra in ing_data4 ) ;

37

38% Dataset f o r g e s tu r e 5

39rand_data5 = tra in ing_tes t_datase t ( ’G5 ’ ) ;

40tra in ing_data5 = rand_data5 ( 1 : tra in ing_samples ) ;

41test_data5= rand_data5 ( tra in ing_samples +1:10) ;

42% Generation o f g e s tu r e 5 template

43t5 = Overlapping_instances_fi l tered_average_600_10_instances_confuse (

tra in ing_data5 ) ;

44

45% Dataset f o r g e s tu r e 6

46rand_data6 = tra in ing_tes t_datase t ( ’G6 ’ ) ;

47tra in ing_data6 = rand_data6 ( 1 : tra in ing_samples ) ;

48test_data6= rand_data6 ( tra in ing_samples +1:10) ;

49% Generation o f g e s tu r e 6 template

50t6 = Overlapping_instances_fi l tered_average_600_10_instances_confuse (

tra in ing_data6 ) ;

51

52

53

54% Sets the o r i g i n a l va lue f o r the counter .

55% This t e l l s us where the t e s t g e s tu r e s get c l a s s i f i e d in to

56i = 0 ;

57j = 0 ;

58k = 0 ;

59l = 0 ;

60m = 0 ;

61n = 0 ;

62% Cal cu l a t e s which template has the minimum d i f f e r e n c e with the t e s t

g e s tu r e
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63f o r a = 1 :7 % This l ooks at the 7 data f i l e s pre sent in the t e s tda ta

64data_array = processing_data_600_10_instances_LDA ( test_data6 ( a ) . name)

;

65f o r b = 1:10 % This l ooks at four i n s t an c e s in sample f i l e

66i f Euclidean_norm_initial_point_no_dot_product_6_gestures (

data_array (1 : 600 , 6∗b−5:6∗b) , t1 , t2 , t3 , t4 , t5 , t6 ) == 1 ;

67i = i + 1 ;

68e l s e i f Euclidean_norm_initial_point_no_dot_product_6_gestures (

data_array (1 : 600 , 6∗b−5:6∗b) , t1 , t2 , t3 , t4 , t5 , t6 ) == 2 ;

69j = j + 1 ;

70e l s e i f Euclidean_norm_initial_point_no_dot_product_6_gestures (

data_array (1 : 600 , 6∗b−5:6∗b) , t1 , t2 , t3 , t4 , t5 , t6 ) == 3 ;

71k = k + 1 ;

72e l s e i f Euclidean_norm_initial_point_no_dot_product_6_gestures (

data_array (1 : 600 , 6∗b−5:6∗b) , t1 , t2 , t3 , t4 , t5 , t6 ) == 4 ;

73l = l + 1 ;

74e l s e i f Euclidean_norm_initial_point_no_dot_product_6_gestures (

data_array (1 : 600 , 6∗b−5:6∗b) , t1 , t2 , t3 , t4 , t5 , t6 ) == 5 ;

75m = m + 1 ;

76e l s e i f Euclidean_norm_initial_point_no_dot_product_6_gestures (

data_array (1 : 600 , 6∗b−5:6∗b) , t1 , t2 , t3 , t4 , t5 , t6 ) == 6 ;

77n = n + 1 ;

78end

79end

80end

81

82con fus i on = [ i j k l m n ] % Confusion matrix

83B = con fus i on
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Appendix H Offline LDA classification - MATLAB Script

1win_size = 600 ; % S i z e o f the window where f e a t u r e s are ex t rac t ed from

2win_inc = 600 ; % Increment in which data i s moved to another window

3gesture_no = 7 ; % This i s the number o f g e s tu r e s that are being recorded

4l = 7 % Number o f f i l e s used f o r t r a i n i n g

5

6% Generation o f the f i l e s with in a f o l d e r in a random order

7rand_data1 = tra in ing_tes t_datase t ( ’G1 ’ ) ;

8rand_data2 = tra in ing_tes t_datase t ( ’G2 ’ ) ;

9rand_data3 = tra in ing_tes t_datase t ( ’G3 ’ ) ;

10rand_data4 = tra in ing_tes t_datase t ( ’G4 ’ ) ;

11rand_data5 = tra in ing_tes t_datase t ( ’G5 ’ ) ;

12rand_data6 = tra in ing_tes t_datase t ( ’G6 ’ ) ;

13rand_data7 = tra in ing_tes t_datase t ( ’G7 ’ ) ;

14

15% Taking 7 f i l e s f o r each ge s tu r e as t r a i n i n g

16tra in ing_data1 = rand_data1 ( 1 : l ) ;

17tra in ing_data2 = rand_data2 ( 1 : l ) ;

18tra in ing_data3 = rand_data3 ( 1 : l ) ;

19tra in ing_data4 = rand_data4 ( 1 : l ) ;

20tra in ing_data5 = rand_data5 ( 1 : l ) ;

21tra in ing_data6 = rand_data6 ( 1 : l ) ;

22tra in ing_data7 = rand_data7 ( 1 : l ) ;

23

24% Co l l a t i ng a l l the data from the t r a i n i n g s e t in to one l a r g e array

25Training_data = Collated_instances_gestures_training_data_260718_LDA (

training_data1 , training_data2 , training_data3 , training_data4 ,

training_data5 , training_data6 , tra in ing_data7 ) ;

26t ra in ing_f i l e_no = s i z e ( training_data1 , 1 ) ;% Number o f f i l e s in the

t r a i n i n g s e t

27Training_motion = ze ro s ( t ra in ing_f i l e_no ∗gesture_no ∗10 ,1) ;

28% Training_motion t e l l s us which ge s tu r e i s be ing performed in the

t r a i n i n g data

29f o r i = 1 : t ra in ing_f i l e_no ∗10

30Training_motion ( i , 1 ) = 1 ;

31Training_motion ( i +( t ra in ing_f i l e_no ∗10) ,1 ) = 2 ;

32Training_motion ( i +(2∗ t ra in ing_f i l e_no ∗10) ,1 ) = 3 ;

33Training_motion ( i +(3∗ t ra in ing_f i l e_no ∗10) ,1 ) = 4 ;

34Training_motion ( i +(4∗ t ra in ing_f i l e_no ∗10) ,1 ) = 5 ;

35Training_motion ( i +(5∗ t ra in ing_f i l e_no ∗10) ,1 ) = 6 ;

36Training_motion ( i +(6∗ t ra in ing_f i l e_no ∗10) ,1 ) = 7 ;

37end
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38% Training index t e l l s o f the s t a r t o f a ge s tu r e

39Training_index = ze ro s ( t ra in ing_f i l e_no ∗10∗ gesture_no , 1 ) ;

40

41f o r i = 0 : ( t ra in ing_f i l e_no ∗10∗ gesture_no )−1 % I t e r a t i n g to add a l l the

po in t s when the ge s tu r e beg ins

42Training_index ( i +1 ,1) = 1 + (600∗ i ) ;

43end

44% Extracts the f e a t u r e s o f the t r a i n i n g data with a window s i z e o f 600

po in t s and

45% increment o f 600 po in t s

46f e a tu r e_t ra in ing = ext rac t_fea ture ( Training_data , win_size , win_inc ) ; %

This i s used to ex t r a c t the RMS va lues and the au t o r e g r e s s i v e

c o e f f i c i e n t s . The order o f the au t o r e g r e s s i v e c o e f f i c i e n t i s 4 and

the RMS i s one value so the re i s a t o t a l o f 5 f e a t u r e s per channel so

the re i s 30 columns o f f e a tu r e data . The number o f rows comes from

the number o f t imes the window goes aga in s t the data .

47% Gets the c l a s s l a b e l s o f t r a i n i n g s e t s

48c l a s s_t r a i n i n g = g e t c l a s s ( Training_data , Training_motion , Training_index ,

win_size , win_inc ) ; % I am not sure what c l a s s_t r a i n i ng

49

50

51

52%Generating t e s t data

53test ing_data1 = rand_data1 ( l +1:10) ;

54test ing_data2 = rand_data2 ( l +1:10) ;

55test ing_data3 = rand_data3 ( l +1:10) ;

56test ing_data4 = rand_data4 ( l +1:10) ;

57test ing_data5 = rand_data5 ( l +1:10) ;

58test ing_data6 = rand_data6 ( l +1:10) ;

59test ing_data7 = rand_data7 ( l +1:10) ;

60

61% Co l l a t e s the data in a l a r g e t e s t f i l e

62test ing_data = Collated_instances_gestures_training_data_260718_LDA (

test ing_data1 , test ing_data2 , test ing_data3 , test ing_data4 ,

test ing_data5 , test ing_data6 , test ing_data7 ) ; % This i s a l l the t e s t

data added toge the r

63t e s t ing_f i l e_no = s i z e ( test ing_data1 , 1 ) ;

64% Obtains the l a b e l f o r the s p e c i f i c t e s t g e s tu r e s

65test ing_motion = ze ro s ( t e s t ing_f i l e_no ∗10∗ gesture_no , 1 ) ; % This shows the

g e s tu r e s that i s occur ing

66% Labels the index o f the t e s t i n s t an c e s

67f o r i = 1 : t e s t ing_f i l e_no ∗ 10
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68test ing_motion ( i , 1 ) = 1 ;

69test ing_motion ( i +( t e s t ing_f i l e_no ∗ 10) ,1 ) = 2 ;

70test ing_motion ( i +( t e s t ing_f i l e_no ∗ 10∗2) ,1 ) = 3 ;

71test ing_motion ( i +( t e s t ing_f i l e_no ∗ 10∗3) ,1 ) = 4 ;

72test ing_motion ( i +( t e s t ing_f i l e_no ∗ 10∗4) ,1 ) = 5 ;

73test ing_motion ( i +( t e s t ing_f i l e_no ∗ 10∗5) ,1 ) = 6 ;

74test ing_motion ( i +( t e s t ing_f i l e_no ∗ 10∗6) ,1 ) = 7 ;

75end

76

77te s t ing_index = ze ro s ( t e s t ing_f i l e_no ∗10∗ gesture_no , 1 ) ;

78f o r i = 0 : ( t e s t ing_f i l e_no ∗10∗ gesture_no )−1

79te s t ing_index ( i +1 ,1) = 1 + ( win_size ∗ i ) ;

80end

81% Extracts the f e a t u r e s from the t e s t s e t

82f e a tu r e_te s t i ng = ext rac t_fea ture ( test ing_data , win_size , win_inc ) ; % This

ge t s a l l the g e s tu r e s

83c l a s s_ t e s t i n g = g e t c l a s s ( test ing_data , test ing_motion , test ing_index ,

win_size , win_inc ) ; %

84

85Nfeat = 6 ; % number o f f e a t u r e s to reduce to

86%[ fea ture_tra in ing , f e a tu r e_te s t i ng ] = pca_feature_reduct ion (

f ea ture_tra in ing , Nfeat , f e a tu r e_te s t i ng ) ;

87[ f e a ture_tra in ing , f e a tu r e_te s t i ng ] = ulda_feature_reduct ion (

f ea ture_tra in ing , Nfeat , c l a s s_t ra in ing , f e a tu r e_te s t i ng ) ;

88% LDA f ea tu r e r educt i on

89

90

91% LDA c l a s s s i f i c a t i o n which outputs the t r a i n i n g e r r o r and t e s t i n g e r r o r

92[ e r ro r_tra in ing , e r ro r_te s t ing , c l a s s i f i c a t i o n_ t r a i n i n g ,

c l a s s i f i c a t i o n_ t e s t i n g ] . . .

93= l d a c l a s s i f y ( f ea ture_tra in ing , f ea tu re_te s t ing , c l a s s_t ra in ing ,

c l a s s_te s t i ng , ’ l i n e a r ’ ) ;

94

95% Produces con fus i on matrix o f the data .

96co l lated_confus ion_matr ix = confmat ( c l a s s_te s t i ng , c l a s s i f i c a t i o n_ t e s t i n g )

;
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Appendix I Real-time extracting training features - MAT-

LAB Script

1f unc t i on [ f ea ture_tra in ing , c l a s s_t r a i n i ng ] =

extract_training_features_v3_010918 ( Training_data , gesture_no ,

ge s ture_ins tance s )

2% Inputs are the t r a i n i n g data , number o f g e s tu r e s and the number o f

i n s t an c e s per ge s tu r e

3win_size = 600 ;% S i z e o f the window where f e a t u r e s are ex t rac t ed from

4win_inc = 600 ; % Increment in which data i s moved to another window

5

6

7Training_motion = ze ro s ( ge s ture_ins tance s ∗( gesture_no ) ,1 ) ;

8% Training_motion t e l l s us which ge s tu r e i s be ing performed in the

t r a i n i n g data

9f o r i = 1 : ge s ture_ins tance s

10Training_motion ( i , 1 ) = 0 ;

11Training_motion ( i +(ge s ture_ins tance s ) , 1 ) = 1 ;

12Training_motion ( i +(2∗ ge s ture_ins tance s ) , 1 ) = 2 ;

13Training_motion ( i +(3∗ ge s ture_ins tance s ) , 1 ) = 3 ;

14Training_motion ( i +(4∗ ge s ture_ins tance s ) , 1 ) = 4 ;

15Training_motion ( i +(5∗ ge s ture_ins tance s ) , 1 ) = 5 ;

16Training_motion ( i +(6∗ ge s ture_ins tance s ) , 1 ) = 6 ;

17

18end

19

20Training_index = ze ro s ( ge s ture_ins tance s ∗gesture_no , 1 ) ; % Training_index

t e l l s us in the t r a i n i n g data when a s p e c i f i c g e s tu r e beg ins

21f o r i = 0 : ( ge s ture_ins tance s ∗( gesture_no ) )−1 % I t e r a t i n g to add a l l the

po in t s when the ge s tu r e beg ins

22Training_index ( i +1 ,1) = 1 + (600∗ i ) ;

23end

24% Obtains the f e a t u r e s o f the t r a i n i n g data and the c l a s s l a b e l s

25f e a tu r e_t ra in ing = ext rac t_fea ture ( Training_data , win_size , win_inc ) ;

26c l a s s_t r a i n i n g = g e t c l a s s ( Training_data , Training_motion , Training_index ,

win_size , win_inc ) ; % I am not sure what c l a s s_t r a i n i ng

27

28end
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Appendix J Real-time LDA classification- MATLAB Script

1f unc t i on c l a s s i f i c a t i o n_ t e s t i n g = LDA_real_time_class i f i cat ion (

test ing_data , f ea ture_tra in ing , c l a s s_t ra in ing , test ing_motion )

2% Inputs are the t e s t i n g data , the f e a t u r e s o f the t r a i n i n g data and the

3% lab e l o f the t e s t data

4win_size = 600 ;%% Siz e o f the window where f e a t u r e s are ex t rac t ed from

5win_inc = 600 ; % Increment in which data i s moved to another window

6te s t ing_index = 1 ; % This i s the s t a r t o f the ge s tu r e

7% Extracts the f e a t u r e s o f the t e s t data and the l a b e l s

8f e a tu r e_te s t i ng = ext rac t_fea ture ( test ing_data , win_size , win_inc ) ; % This

ge t s a l l the g e s tu r e s

9c l a s s_ t e s t i n g = g e t c l a s s ( test ing_data , test ing_motion , test ing_index ,

win_size , win_inc ) ; %

10

11% Dimens iona l i ty r educt i on us ing LDA

12Nfeat = 6 ; % number o f f e a t u r e s to reduce to

13%[ fea ture_tra in ing , f e a tu r e_te s t i ng ] = pca_feature_reduct ion (

f ea ture_tra in ing , Nfeat , f e a tu r e_te s t i ng ) ;

14[ f e a ture_tra in ing , f e a tu r e_te s t i ng ] = ulda_feature_reduct ion (

f ea ture_tra in ing , Nfeat , c l a s s_t ra in ing , f e a tu r e_te s t i ng ) ;

15

16% C l a s s i f i c a t i o n us ing LDA

17[ e r ro r_tra in ing , e r ro r_te s t ing , c l a s s i f i c a t i o n_ t r a i n i n g ,

c l a s s i f i c a t i o n_ t e s t i n g ] . . .

18= l d a c l a s s i f y ( f ea ture_tra in ing , f ea tu re_te s t ing , c l a s s_t ra in ing ,

c l a s s_te s t i ng , ’ l i n e a r ’ ) ;

19

20end
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Appendix K Feature extraction comparison
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Figure K.1: Results of Subject 2
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Figure K.2: Results of Subject 3
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Figure K.3: Results of Subject 4
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Figure K.4: Results of Subject 5
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Figure K.5: Results of Subject 6
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Appendix L Rift controller game results

Table L.1: Measurements from game when using the rift controllers for the second trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 5.93 6.61 2 3

2 0.86 1.87 1 2

3 5.27 6.86 2 3

4 2.41 3.90 2 3

5 4.28 5.68 1 2

6 3.15 5.15 2 3

7 1.80 3.37 1 2

8 1.08 2.49 1 2

9 2.38 4.89 1 2

10 1.78 3.14 1 2

Table L.2: Measurements from game when using the rift controllers for the third trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 8.09 10.18 1 2

2 1.52 2.84 1 2

3 1.23 2.49 1 2

4 4.90 5.77 1 2

5 1.47 2.47 1 2

6 1.60 2.40 2 3

7 2.61 3.46 1 2

8 1.42 2.13 1 2

9 1.42 3.31 2 3

10 0.64 1.38 1 2
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Table L.3: Measurements from game when using the rift controllers for the fourth trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 3.18 4.17 1 2

2 1.18 2.21 1 2

3 1.57 2.54 1 2

4 1.97 3.34 1 2

5 2.26 3.44 2 3

6 4.38 6.09 5.13 8.26

7 5.13 8.26 2 4

8 1.07 2.67 1 2

9 6.41 7.54 1 2

10 4.72 7.52 1 2

Table L.4: Measurements from game when using the rift controllers for the fifth trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 2.35 3.87 1 2

2 1.17 2.81 1 2

3 10.20 12.34 2 3

4 16.61 17.33 2 3

5 1.32 2.18 1 2

6 3.82 4.88 4 5

7 4.08 6.68 1 2

8 5.99 7.41 2 3

9 1.91 13.68 2 3

10 3.31 11.08 1 2

72



Appendix M NU interface game results

Table M.1: Measurements from game when using the NU interface for the second trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 6.43 11.58 1 3

2 3.82 6.56 1 2

3 5.03 11.06 2 3

4 8.20 13.01 1 3

5 56.55 58.51 3 4

6 22.53 26.24 5 7

7 10.83 12.58 1 2

8 20.57 21.66 5 6

9 2.86 4.49 1 2

10 3.61 14.32 2 3

Table M.2: Measurements from game when using the NU interface for the third trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 6.25 14.78 2 4

2 11.61 41.12 1 4

3 8.76 14.56 1 3

4 20.89 55.01 1 2

5 8.74 17.18 1 2

6 3.28 4.80 1 2

7 18.38 20.13 1 2

8 8.42 25.59 4 5

9 38.29 42.77 5 6

10 1.74 6.23 1 2
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Table M.3: Measurements from game when using the NU interface for the fourth trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 16.97 18.82 2 3

2 1.76 3.40 1 2

3 1.74 3.50 1 2

4 6.12 17.39 2 4

5 2.41 10.61 1 2

6 2.08 4.16 2 1

7 2.84 4.70 2 3

8 5.36 7.54 3 4

9 1.86 3.93 1 2

10 1.76 3.60 1 2

Table M.4: Measurements from game when using the NU interface for the fifth trial

Object

Time

taken to

grab an

object (s)

Time

taken to

place

object in

goal (s)

Number

of actions

to grab

object

Number

of actions

used to

put object

in goal

1 5.65 7.41 1 2

2 1.96 6.89 1 2

3 5.58 44.30 2 3

4 3.61 9.51 1 2

5 2.84 5.03 1 2

6 7.33 11.05 2 3

7 1.85 22.41 1 3

8 11.92 26.90 1 2

9 15.96 22.54 1 2

10 3.49 18.70 1 2
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